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Abstract

The aldol reactions of aromatic aldehydes with ketones catalyzed by pyrrolidine were accelerated by addition of a series of Brgnsted acids t
the reaction medium and found that the catechol was the most effective co-catalyst. The combination of pyrrolidine and catechol are very efficien
for catalyzing the reaction to proceeding under mild conditions with high yield in short time.
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1. Introduction plex molecules which possess acid or base sensitive functional
groups; (3) the desired aldol products is usually accompanied
The direct aldol reaction is one of the most powerful and effi-by dehydration side producf8,9,12,13,31](4) unsatisfactory
cient methods for carbon—-carbon bond formaf{ibr3]. These vyield [16] is observed in most of the case and (5) long reaction
developments include: (i) Lewis acid-catalyzed Mukaiyama-ime is required. Therefore, mild reaction conditions are much
type [4-9] and Lewis base-catalyzefB—13] aldol reac- sought after to overcome some, if not all, the above problems.
tions. (ii) Bimetallic and heterobimetallic bifunctional Lewis  Nature’s catalytic systems (enzymes, antibodies as well as
acid/Bragnsted base catalyZdd—16]direct aldol reactions. (iii)  others) are more efficiency and apparently do not need long reac-
Small organic moleculg4,2,17—-30atalyzed direct aldol reac- tion time under mild conditions. Chemists have learned much
tions. However, some of the classical and conventional alddirom Nature and have very successfully been using the catalytic
reaction has not been well exploited due to the following reasonsntibody approach including evolutiof82]. It is clear that the
(1) side reactions such as self-condensation of the ketone or/angcognition process in such systems relies on hydrogen bonding
dimerization of the aldehyde can be a problem; (2) the hashnd hydrophobic interactior{82,33] Barbas and co-workers
reaction conditions employed which, usually require a strondhave screened a series of acid and found that the combination
acid, such ap-TsOH[2], HCI or base, such as KOF31] and  of pyrrolidine/acetic acid (fa =4.8) was superior to proline in
NaOH [12,13] makes it unattractive in the synthesis of com- the reactivity when used them in the aldol reac{ibh The suc-
cess of such reaction relies on enamine intermediate, which was
formed in situ between ketone and pyrrolidine. In our labora-
* Corresponding author. Tel.: +86 23 68252927; fax: +86 23 68254000,  tOry, we have studied systematically the influence of acidity on
E-mail address: pengyungui@hotmail.com (Y. Peng). different catalytic circle stages of the direct aldol reaction and
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Scheme 1. Screening of additives of the aldol reaction.

found that the match of the acidity and basicity is very importantydrogen-bonds to the carbonyl of aldehydes, both can activate
to obtained good reactivity and high yielg4]. Except for the  the carbonyl group’s towards nucleophilic attack.

acidity, hydrogen bonding, especially double hydrogen bonding

can also play an important role in modulating the reactivity. In2. Results and discussion

order to find more mild and efficient catalytic system, we try to

study the influence of the multi-phenolp=9.4-10.5) on the We report the study of the aldol reaction of acetone
reactivity because those hydroxyl groups can simultaneously agiith p-nitrobenzaldhyde, which catalyzed by those acid addi-
as Bronsted acids and form different type of mono- or doubletives/pyrrolidine &cheme 1 The results are shown iFable 1

Table 1

The influence of additive on the direct aldol reacfion

Entry Additive pKa (25°C) Time (min) IIa (%) IVa (%) Chemoselectivityllla/ Total yield (%}
(IIIa +1IVa) (%)

1 - - 20 15.8 38.9 28.9 54.7

2 1 10.4 (20C) 90 56.8 33.0 63.2 89.8

3 2 9.4 30 42.0 45.4 48.0 87.4

4 3 7 50 51.2 44.4 53.6 95.6

5 4 9.4 30 74.4 16.1 82.2 90.5

6° 5 120 67.6 8.6 88.7 76.2

7 6 7.2 50 64.6 29.7 68.5 94.3

8 7 4.8 60 63.2 22.4 73.8 85.6

2 The reaction was carried out in neat dried acetone with a concentration of 0.4 mol/C gt-ditrobenzaldehyde/additives/pyrrolidine = 1:0.4:0.2.
b |solated yield.

¢ Without pyrrolidine.

Table 2
The influence of conditions on the reaction
Entry C (mol/L) T(°C) H20 (eq) Pyrrolidine/ Time (min) IIIa (%) IVa (%) ChemoselectivitylIla/ Total yield (%}
catechol (eq) (IIIa +1IVa) (%)
1 0.4 0 - 0.2/none 90 15.8 38.9 28.9 54.7
2 0.4 0 - 0.2/0.2 30 43.2 53.2 44.8 96.4
3 0.4 0 - 0.2/0.3 30 50.1 43.9 53.3 94.0
4 0.4 0 - 0.2/0.4 30 74.4 16.1 82.2 90.5
5 0.4 0 - 0.2/0.5 60 53.8 41.9 56.2 95.7
6 0.4 0 - 0.2/0.6 60 51.1 31.8 61.7 82.8
7 0.2 0 - 0.2/0.4 40 61.2 36.7 62.5 97.9
8 0.8 0 - 0.2/0.4 30 33.7 50.3 40.1 84.0
9 0.4 0 - 0.1/0.2 30 52.3 45.6 53.4 97.9
10 0.4 0 - 0.05/0.1 30 48.3 48.3 50.0 96.6
11 0.4 0 0.2 0.2/0.4 30 75.5 20.0 79.1 95.5
12 0.4 0 0.3 0.2/0.4 30 75.6 18.3 80.5 93.9
13 0.4 0 0.4 0.2/0.4 30 81.3 17.2 82.5 98.5
14 0.4 0 0.5 0.2/0.4 30 68.9 23.3 74.7 92.2
15 0.4 0 0.6 0.2/0.4 30 67.5 27.2 71.3 94.7
16 0.4 0 0.8 0.2/0.4 30 65.6 28.9 69.4 94.5
17 0.4 22 0.4 0.2/0.4 30 44.5 32.8 57.6 77.3
18 0.4 -12 0.4 0.2/0.4 30 56.0 32.2 63.5 88.2

a |solated yield.
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When pyrrolidine was independently used as catalyst, the aldol In order to increase the reactivity and chemoselectivity, sev-
productsIlla and IVa were obtained in 54.7% after 1.5h eralreaction parameters had to be optimized. A series of solvents
(Table 1 entry 1). With the addition of 0.4 equivalent addi- including DMSO, DMF, CHCl,, CHCIl3, MeOH, CI(CH).Cl,

tives 1-4 as co-catalyst, the total yield was up to 87.4-95.6%CsHg and CHCOCH; were screened. And the best solvent was
(Table 1 entries 2-5). These additives were also superior tdound to be acetone. The most suitable pyrrolidine/catechol ratio
proline in the catalytic reactivityTable 1, entry 6). Cathechol was found to be 1:2 for effective rate acceleration and high
was founded to be particular effective and prominently supeehemoselectivity; if the ratios greater or less than 1:2 signifi-
rior to resorcinol which with the same&p. When use catechol cantly reduced the chemoselectivitiaple 2 entries 1-6). The

as additive, the product was obtained in 82.2% chemoselectivitgptimum reaction concentration was found to be 0.4 mol/L for
and 90.5% yieldTable 1 entry 5). Only 48.0% chemoselectivity high yield and high chemoselectivitffdble 2 entries 4, 7 and
and 87.4% yield were obtained when used resorcinol as additiv&). We also found that the catalytic amount of pyrrolidine (0.2
(Table 1 entry 3). This may be due to the capable of formingequivalent) and catechol (0.4 equivalent) were necessary and
double-hydrogen-bond between catechol and aldehyde. Onbufficiently enough for the reactioigble 2 entries 4, 9 and 10).
mono-hydrogen-bond was formed in the presence of resorcinokurthermore, proper amount of water is benefit for this reaction,

Table 3
- OH OH O OH
Catechol NR
—atoehel R R
RCHO + R\ _ o Pyroldine, 0C [y i, K I
Direct aldol reactions of aldehydes with ketones catalyzed by pyrrolidine/cate (1) (m (1) (Iv)
Entry R-CHO (1)) Time (min) (I1I) (%) Iv) (%) Total yield (%§
O
MeO CHO )]\
1¢ 240 77.3 77.3
/@\ O
2d O.N CHO )]\ 40 56.5 37.2 93.7
CHO
X i
3 NO, )J\ 40 50.7 38.3 89.0
Cl CHO
O
4 ; )J\ 120 47.8 45.6 93.4
O
O,N CHO )J\
5 30 81.3 17.2 98.5
(@]
O,N CHO )k/
6 40 41.7/50.¢ 92.4
2
7 )k/\ 30 84.4 84.4
OzN—QCHO O:o
8 30 76.6 15.5 92.1
OQN—QCHO <:>:o
9 30 92.8 92.8
&O
10 O.N CHO 30 94.8 94.8
@R o
11 O.N CHO E>: 30 87.7 7.8 95.5

@ The reaction was carried out in neat ketone with a concentration of 0.4 MGitdldehyde/catechol/pyrrolidine = 1:0.4:0.2:0.4.
b |solated yield.

¢ Reaction temperature = 2€.

d Reaction at the methyl.
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